Finding the Pitfalls in Query Performance

M.L. Kersten”
Centrum Wiskunde & Informatica
martin.kersten@cwi.nl

P. Koutsourakis
MonetDB Solutions
panagiotis.koutsourakis@

Y. Zhang
MonetDB Solutions
ying.zhang@monetdbsolutions.com

monetdbsolutions.com

ABSTRACT

Despite their popularity, database benchmarks only highlight a
small part of the capabilities of any given system. They do not
necessarily highlight problematic components encountered in real
life or provide hints for further research and engineering.

In this paper we introduce discriminative performance bench-
marking, which aids in exploring a larger search space to find
performance outliers and their underlying cause. The approach is
based on deriving a domain specific language from a sample query
to identify a query workload. SQLscALPEL subsequently explores
the space using query morphing, and simulated annealing to find
performance outliers, and the query components responsible. To
speed-up the exploration for often time-consuming experiments
SQLscALPEL has been designed to run asynchronously on a large
cluster of machines.

ACM Reference Format:

M.L. Kersten, P. Koutsourakis, and Y. Zhang. 2018. Finding the Pitfalls in
Query Performance. In DBTest’18: Workshop on Testing Database Systems
, June 15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3209950.3209951

1 INTRODUCTION

Each new version of a database system ideally shows a better perfor-
mance. Commercial providers have a large quality assurance team
that can study and leverage the workload of key customers to guard
against dissatisfied users. In research, the predominant approach is
to rely on benchmarks such as TPC-H to measure progress.

Designing a new high-performance database system from scratch
is even more cumbersome. A proof of superior performance on a
subset of a TPC-H may be countered by lack of functionality in
many other parts. Or worse, a biased use of TPC-H to show how a
new system excels or to invent one’s own (micro) benchmark to
prove a point thereby neglecting the often richer functionality of
the systems compared with.

In this paper we describe a different approach to the problem.
Consider two systems A and B, which may be different altogether
or merely two versions of the same system. System B may be consid-
ered an overall better system, beating system A on all benchmarked

*Also with MonetDB Solutions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DBTest 18, June 15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5826-2/18/06...$15.00
https://doi.org/10.1145/3209950.3209951

TPC-H queries. This does not imply that there aren’t queries that
can not be handled more efficiently in A. These queries might sim-
ply not be part of the benchmark. Or the improvement is obtained
in the restricted cases covered by the benchmark.

Therefore, the key questions to consider are “what queries per-
form relatively better on A”? and “what queries run relatively better
on B”? Such queries give clues on the side-effects of new features or
identify performance cliffs. We coin the term discriminative bench-
mark queries to describe such queries. For any pair of systems there
may be just a few such queries, or there may be a large collection
if the systems are targeted at different application domains.

Unfortunately, even for a fixed database schema and data distri-
bution there is an infinite number of queries to consider. This puts
the challenge on designing good heuristics to finding discriminative
queries with minimal resources. Since we are primarily interested
in finding performance pitfalls situations we assume that the data-
base schema and data are available upfront. This can be a snapshot/
sample of a real-world database. For research purposes it can be a
TPC-H database at a given scale-factor.

In the remainder of this paper we introduce SQLSCALPEL, a tool
to aid in finding performance pitfalls using discriminative queries,
i.e. query pairs with a small edit-distance that exhibit substantially
different performance behavior. To steer the process, we start with
sample SQL queries that are automatically transformed into a large
search space of related queries. In this way, we stay close to the
intended application semantics. The system explores this space
using a guided random walk to find the discriminative queries. This
leads to the following contributions:

e We extend the state of the art in grammar based database
performance benchmarking.

e We provide an algorithm to find query pitfalls as embodied
by discriminative queries.

e We use simulated annealing to explore the practical infinite
space of experiments.

e We deploy asynchronous experimentation on a cluster of
target machines to reduce the time needed to perform the
experiments.

SQLscALPEL takes comparative performance assessment to a new
level. It is inspired by a tradition in grammar based testing of soft-
ware [8]. It assumes that the systems being compared understand
more-or-less the same SQL dialect and that a large collection of
similar queries can conveniently be described by a grammar. Minor
differences in syntax are accommodated using dialect sections in
the test suite.

One of the main problems is to cope with the combinatorial
explosion of queries even in a simple grammatical description of
the search space. For example, one of our driving test cases in-
volved 43 sample queries, which brought together in a grammar
leads to a search space of 10%? different queries. Evidently they

https://doi.org/10.1145/3209950.3209951
https://doi.org/10.1145/3209950.3209951

DBTest’18, June 15, 2018, Houston, TX, USA

can not reasonably all be checked, but also it is not clear if the 43
queries properly captures the performance profile of the system in
all critical areas.

The second problem of performance measurement is scale. The
performance on TPC-H SF-1 often has no predictive power for SF-
100 exercised on the same machine. This means that a performance
analysis tool should be built for long running experiments at mul-
tiple scales. An individual experiment may run for hours before
reporting a result. This immediately leads to relying on a cluster of
machines and asynchronous processing of the experiments.

Another challenge comes from the database system itself. Minor
edits to a query formulation may trigger a different path to be taken
in the optimizer. This leads to a rough performance landscape of
seemingly identical queries, as shown by the Picasso project [5, 6].
This property makes a hill climbing tour through the search space
cumbersome. However, it is also known that many queries have
comparable performance, simply because they touch data with a
similar data distribution, index support and data type. For example,
the performance of SELECT sum(C1) FROM T1 doesn’t change
much if we switch to a column C2 of the same data type. This means
that a controlled random picking of candidates queries becomes a
valid option to locate the performance pitfalls.

A slight twist to the problem is to consider a single complex
query from which we would like to isolate the critical performance
components. In this case, a grammatical description of the query
tells how it can sensibly be decomposed into its building blocks.
Then SQLSCALPEL can run it against a dummy reference target to
isolate the expensive predicates or sub-queries.

Outline. In the remainder of this paper we focus on the design
of SQLscALPEL. A short synopsis of the research background is
given in Section 2. In Section 3 we give an architectural over view
and introduce the query search spaces. The derivation process for
new queries is presented in Section 4. Section 5 explains how we
explore it to find discriminative queries. A preliminary functional
evaluation is presented in Section 6.

2 BACKGROUND

Since the early days of database management systems, researchers
have made it a standard practice to compare the performance of
their solution to that of their peers using e.g. TPC-H. Its succes-
sor TPCH-DS [10] has been under development for over a decade
and covers a wide range of application requirements. A decade
where we have also seen a switch from traditional database ap-
plications towards NOSQL systems, main-memory systems, and
massive distributed systems in the Cloud. Some recent develop-
ments on benchmark design, such as the LDBC benchmark [2], are
geared at graph-like database performance evaluations. It can be
used to analyse social networks. In this paper we merely take the
benchmarks as a starting point to study their query space.
Grammar based testing has a long history in software engineer-
ing, in particular in compiler validation, but it also remained a small
niche in database system testing. In grammar-based testing [8, 12]
the predominant approach is to annotate a grammar with proba-
bilistic weights on the productions. It is primarily used to generate
test data geared at improved coverage tests for the target system,
e.g. compiler [4], or to capture a user interaction with a web-based

M.L. Kersten, P. Koutsourakis, and Y. Zhang

application. These approaches can be considered static and labor
intensive, as they require the test engineer to provide weights and
hints up front.

Another track pursued is based on genetic algorithms. A good
example is the open-source project SQLsmith!, which provides
a tool to generate random SQL queries by directly reading the
database schema from the target system. It has been reported to
find a series of serious errors, but often using very long runs. Unlike
randomized testing and genetic processing we guide the system
through this search space by morphing the queries in a stepwise
fashion.

Unlike work on compiler technology [9], the grammar based
experimentation in the database arena is hindered by the relatively
high cost of running a single experiment. Some preliminary work
has been focused on generating test data with enhanced context-
free grammars [7] or based on user defined constraints in the in-
termediate results [1]. A seminal work is [11], where massive sto-
chastic testing of several SQL database systems was undertaken to
improve their correctness.

The problem of large execution times can be alleviated somewhat
nowadays, by using distributed experimentation platforms like
ACTiCLOUD?, where differentiation of database-as-a-service is
one of the key targets.

3 SYSTEM OVERVIEW

In this section we provide an overview of the SQLscALPEL architec-
ture, the specification language for the query benchmarks, and the
details to run them on a target platform.

3.1 System architecture

The SQLSCALPEL architecture is a straight-forward server/client
approach.

SQLscalpel server This component is the heart of the system. It
can be controlled from the command line and offers a web interface
(See 5). A parser reads a specification file or a sample SQL query
to initialize the project. A domain specific grammar and template
queries are derived from them to form a pool of candidate experi-
ments. The state of the workflow is kept in a MonetDB instance.

SQLscalpel client This component is run on each target system.
It connects with the server to obtain outstanding (or unfinished)
tasks. It translates this into a call to a local program to actually
perform the task. The client program can be used to shield sensitive
information, e.g. method and authentication information to actually
run the experiment. Upon completion of the task, a REST call is
made to the server to update the state. Each client is free to deter-
mine where and how the task should be executed. The predominant
factor retained is the best-of time of a repetitive run of a single
query against a target DBMS and a reference value for the result.

3.2 Query space

Query spaces are specified using a domain-specific language gram-
mar G. All sentences in the language derived, i.e. L(G), are candi-
date experiments to be ran against the target system(s). The sample
grammar in Figure 2 illustrates a query space grammar with seven

Uhttps://share.credativ.com/~ase/sqlsmith-talk pdf
http://www.acticloud.eu/

https://share.credativ.com/~ase/sqlsmith-talk.pdf
http://www.acticloud.eu/

Finding the Pitfalls in Query Performance

${Tag} a sentence derived from Tag
${Tag}* an optional repeated sentence
${Tag}+ arepeated sentence

$[Tag] an optional sentence

Figure 1: Tag syntax and semantics

query:
SELECT ${project} FROM ${1_tables} $[1_filter]
project:
${1_count}
${1_column} ${columnlist}=*
1_tables:
nation
columnlist:
, ${1_column}
1_column:
n_nationkey
n_name
n_regionkey
n_comment
1_count:
count (%)
1_filter:
WHERE n_name= 'BRAZIL'

Figure 2: Sample SQLSCALPELS grammar

rules. Each grammar rule is identified by a name and contains a
number of alternatives, i.e. free-format sentences with embedded
references to other rules using an EBNF-like encoding (Table 1).

The SQLscALPEL syntax is geared at a concise, readable descrip-
tion for the user. Internally, the grammar is normalized by making
a clear distinction between rules producing lexical tokens, only
governing alternative text snippets, and all others. called a literal
classes in the sequel. Furthermore, the validity of the grammar is
checked by looking for missing and non-used rules. They terminate
the process.

Generation of concrete sentences from the grammar is imple-
mented with a straight-forward recursive descend algorithm. This
process stops when the parse tree only contains text and references
to lexical tokens (e.g. ${1_column}). They will form the templates
for a final step, injection of tokens that embody predicates, expres-
sions, and other text snippets to be derived for a concrete SQL
query.

A naive interpretation of the grammar as a language generator
easily leads to a (extreme) large set of queries. Especially, when a
literal token would be defined using a value producing function,
a.k.a. token generator, or when a recursive grammar rule is provided.
To control this explosion somewhat we enforce that the literal
tokens are used at most once in a query. This does not rule out
that the same text snippet can be used multiple times. They are
differentiated by their line number in the grammar. Furthermore, we
ignore the different orders literal tokens may appear in a query. This
heuristic is inspired by the observation that most query optimizers
normalize the expressions internally first and look at terms as sets.

DBTest’18, June 15, 2018, Houston, TX, USA

query:
SELECT ${1_column_n} ${plist_n}* FROM nation
SELECT ${cols} ${plist}* FROM nation,region \
WHERE ${1_join}
plist_n:
, ${1_column_n}
plist:
, ${cols}
1_column_n:
n_nationkey
n_name
n_regionkey
n_comment
cols:
r_regionkey
${1_column_n}
1_join:
nation.n_regionkey = region.r_regionkey

Figure 3: Sample SQLSCALPELS join space

This way it suffice to count the lexical tokens during template
generation and cap sentence expansion by taking this into account.
For example, the template SELECT ${1_column} FROM ${tables}
is derived from the grammar above and can be finalized by choos-
ing a table and a column literal. The number of query templates is
limited compared to all possible queries. The grammar shown in
Figure 2 leads to 10 templates, which can be used to generate 32
different queries.

3.3 SQL to SQLscalpel translation

A SQLscALPEL grammar can be used to generalize existing bench-
marks to cover a much larger spectrum of valid queries. For example,
we can take TPC-H and morph the individual queries into a query
grammar. This can be done in multiple ways. One extreme is to
merely take the 22 queries of TPC-H as alternative literals under a
single rule identifier. The other extreme is to break its parse tree and
making all sub-trees optional as a basis for a SQLSCALPEL grammar.

We have implemented a SQL parser that turns a query into a
SQLscaLPEL grammar. The heuristic is to split the query along
project-list elements, table-expressions, and/or expressions, group-
by and order-by terms. The remainder are considered literal tokens.
The language derived encompasses all possible substructures. Of
course, then dropping a table expression would leave the query
semantically invalid.

A good practice for manual construction of a SQLSCALPEL gram-
mar is to gradually increase its complexity . This way the explosion,
and subsequent work, can be controlled. Furthermore, a prudent
grammar construction can avoid erroneous queries to a large ex-
tend. For example, Figure 3 illustrates a grammar with a join term
where the projection attributes only make sense in the context of
1_join.

DBTest’18, June 15, 2018, Houston, TX, USA

3.4 Running experiments

If SQLscALPEL is used for a proof-of-concept project or to assess the
performance of a given production database solution, we can not
assume that the complete schema and database are handed over for
experimentation. Instead, we should be happy to be given access to
a test system, possibly loaded with a representative sample of the
database. But even in this case, as little data as possible should be
leaked. This is largely captured by the SQLscALPEL client program,
which grabs tasks from a task pool, executes them, and reports the
findings back. It is under full control of the local DBA.

The client program requires the definition of one or more driver
scripts, i.e. local programs to run an experiment. The user cre-
dentials, driver name and query id are centrally retained to make
analysis and comparisons possible. Optionally, the user can release
database and hardware product information for completion of the
analysis reports. This information is not shared unless explicitly
allowed.

A script per target system is the way to go. In particular, it
controls how to set up the target system for an experiment, how
to massage the performance results into a message understood by
SQLscALPEL, and how to cope with failing experiments. In most
cases the environment should be reset to guarantee repeatable
results, e.g. by flushing system caches. The experiment can be ran
multiple times to obtain the best response time over a hot database.
Some post processing is often needed to gather the performance
date from the DBMS.

The expected output from each experiment is a simple JSON dic-
tionary structure, e.g. {"system":"sf1", "tag":1, "time":43.5, "row":1242,
"checksum":52814}. It should at least include the query tag, its run-
time in millisecond precision, the number of rows in the result set
count and a checksum over the result set for consistency analysis
between the targets. The remainder of the JSON structure can be
used to pass system specific key-value pairs for post analysis.

A complicating factor in running SQL experiments against multi-
ple DBMS is that the SQL syntax understood may slightly differ. This
is accommodated using literal class dialects. The class ${1_column}
can be extended to the dialect ${1_column@N} where N is the name
of a DBMS driver script. The sole requirement is that the order and
number of elements in both classes are semantically identical. Al-
though dialects solve most of the problems encountered, it can not
solve all syntax/lexical differences. In that case the query grammar
could be used to produce e.g. an abstract syntax tree and let the
driver script convert it into the concrete syntax required by the
target system.

4 MORPHING QUERIES

The query templates derived from the grammar provide a nice
starting point of our search. Each template is a precise query up-to,
but excluding final selection of the lexical tokens, i.e its parameters.
Once we fix those with a collection of tokens into a concrete query
task we can start a guided walk through the space by morphing the
query. There are three morphing steps to consider: alter, expand
and a prune strategy. This guided generation of concrete queries
based on previous versions, allows us to attribute performance
differences to specific changes in terms of the SQL text, in contrast
to systems such as RAGS [11] that randomly generates queries.

M.L. Kersten, P. Koutsourakis, and Y. Zhang

Alter strategy. When we start SQLscALPEL the query pool is
empty, which means we can not morph a query already seen. The
easiest way out is then to pick randomly a query template and
then pick a random subset of all the literal classes mentioned. If,
however, we can start with a randomly picked previously executed
query, then one literal class is chosen at random and within that
class we change one literal token. Since we collect a large number
of queries in the pool over time, such an edit action may lead to a
query that has already been executed. These are obviously ignored.

Expand strategy. The next strategy is to take a query from the
pool and search for a template that is slightly larger. The metric
here is that the number of literal classes is minimally expanded.
It ensures also semantic cohesion of the queries. To illustrate, the
query derived from template

SELECT ${1_column} FROM ${1_table}
can be expanded into a query satisfying
SELECT ${1_column}, ${1_column} FROM ${1_table}.

To complete the SQL query we need to add one more choice from
${1_column}.

Prune strategy. The reverse operation for expanding a query is to
search for the template with slightly fewer lexical classes. A prune
strategy can be quite effective for queries with a lot of predicates.
They are likely to produce small results and will be relatively fast to
execute. With each pruning step the query becomes less complex,
but probably also less selective. This increases the processing time.
As such, a good starting position for a search could also be the
most complex query. It is also the preferred method when the user
wishes to identify the contribution of sub-queries.

ERROR HANDLING. SQLSCALPEL is agnostic to the semantics im-
posed by the target systems. This means that an experimental run
may report a syntax or semantic error. It is still kept in the query
history as a basis for generating derived queries. The reason is that
a morphing step can convert an erroneous query into a valid one.

5 OQUERY SPACE EXPLORATION

Our prime target is to identify queries that separate two systems
based on their relative performance differences. Consider for this a
query Q exercised against both system A and B with timings T4 (Q)
and Tg(Q). The performance ratio of such a single query does not
provide much insight, except for the revelation that one system
might be significant faster then the other. Surveying the ratios of
many queries forming a benchmark set is already more informative
to gain understanding the differences. It provides hints on what
queries are relatively expensive/cheap. But, given the size of query
space, it is not feasible to gather all ratios up front.

To understand the impact of queries we should learn what com-
ponent in a query, e.g. sub-queries, expressions or predicates, is
causing a major change in the ratio observed. It is already widely
known that the performance space of L(G) is ragged, but also that
many queries have similar performance [5, 6]. For example, when
keeping the selectivity factor and the data distribution constant
for two identically typed columns, their performance is identical.
Especially if we take the best result of a sequence of runs, because
that would nullify the effect of start up cost and variance induced be

Finding the Pitfalls in Query Performance

concurrent operating system load. With this information in mind
we can reduce the complexity of the query grammar and have a
heuristic to escaped a brute force evaluation of all queries in the
space.

Without such background knowledge, we need to compare the
ratio and structure of two almost identical queries. What we can do,
however, is to take query instance Q and morph it with a small edit
change into a query Q’. If we then compare the ratio T4 (Q) / T (Q)
against T4(Q’) / Tg(Q’) a statistical significant difference might
become visible.

If the divergence is equal to 1.0 we can conclude that both sys-
tems are equally affected by the morphing to Q’. This may be
relatively good or bad, but does not provide much further insight.
However, if the ratio becomes greater then 1.0 it indicates that the
performance of system A is relatively better then B. Conversely, if
the ratio is less then 1.0 then system B is relatively better.

In all cases not equal to 1.0 we may conclude that the difference
is likely to be attributed to the edits made. We have found a dis-
criminative query. This gives clues on where a system developer
should invest his time. Beware, a divergence not necessary indicates
a malfunctioning, it may also show that a system hits a resource
limit, e.g. flushing intermediates to a slow disk instead of keeping
them in RAM cache. Or, that some supportive data structure, e.g.
a join index, can be used to speed up execution which couldn’t be
used before.

Definition 5.1. The divergence between two queries Q and Q’
on system A and B is defined as:

(Ta(Q") / TB(Q") / (Ta(Q) / TB(Q))-

5.1 Simulated annealing

The baseline strategy is to start with a random query from the
space of alternatives. The SQLsCALPEL specification gives you an
easy handle on this task. We merely pick a template, a collection
of lexical tokens from each of the sub-languages and glue them
together to create a syntactically valid SQL query.

After the query has been executed we know the performance ra-
tio between the two systems. Subsequently, we apply the morphing
steps to search for more prominent differences using a randomized
selection of tokens needed and execute the queries. For example,
let {A, B, C} be the tokens chosen in a query task Qp and we are
left with a collection of non-used tokens {D, E}. We can derived
6 direct morphing steps by replacing a single token. Without fur-
ther knowledge, each of these replacements may tip the point of
divergence.

If, however, we know that the task Qg is derived from another
task already performed Q; ({A, B}) and Q2({A, C}), respectively. Can
we then concluded that B and C are ’identical’ in terms of diver-
gence? e.g. considering only the result of replacing B with D. Proba-
bly not. From the SQLSCALPEL perspective they are simple sentences
without semantics. The underlying cause is not known. {D} can
represent a data source with a distribution that has different effect
on {A,C} and {A,B}. It also can represent an operator with com-
pletely different complexity. The challenge then turns into a guided
walk where best guesses, hopefully, lead to insights as quickly as
possible.

DBTest’18, June 15, 2018, Houston, TX, USA

Such a strategy is known as simulated annealing and heavily
used in cost-based query optimizers [3]. The cost metric to decide
what direction to take in the space of alternatives is the perfor-
mance ratio. The number of queries considered during a simulated
annealing step is bounded by a beam size, which caps the number
of new experiments. Furthermore, at every step we take the top N
of prospective discriminative queries as the starting point to morph
them into new queries. With an increasing part of the space being
explored, a trail of morphing steps ends in a local minimum. To
escape this, we can continue picking a random query and restart
the process.

6 EVALUATION

SQLsCALPEL is a prototype under active development. In this section
we report on our initial experiences using it. The purpose was not to
engage into a deep performance analysis of specific target systems,
but on assessment of the design and heuristics itself to steer us into
the right direction.

6.1 The platform

SCALPEL is built as a web-based software platform for developing,
management, and sharing experimental results. The GUI is built
around Python and the Flask and Bokeh libraries, which already pro-
vides a rudimentary set of visual data analytics functions.? Figure 4
illustrates the interface after running experiments on TPC-H query
1. It shows the execution time of a system for a series of queries.
The dashed lines between the queries illustrate the morphing action
taken. The color coding for {alter, expand, prune} morphing is {pur-
ple, green, blue}. Queries that result in an error, i.e. are semantically
incorrect, are shown as yellow dots. Note that they can be morphed
into valid queries later on. The node size illustrates the number of
components in the query. Hovering over a node shows the details
of the experiment.

Running experiments against MonetDB, the user would quickly
notice the dominant term in Q1:

sum(1l_extendedpricex(1 - 1_discount)*(1 + 1_tax))
as sum_charge

as shown in Figure 4. It is by far the most expensive component. The
underlying reason stems from the way MonetDB evaluates such
expressions, which include type casts to guard against overflow
and creation of fully materialized intermediates. The component
breakdown illustrates this more clearly as shown in Figure 5.

6.2 TPC-H

The TPC-H benchmark was revisited to assess how large the search
space becomes when the SQL queries are converted automatically
into a SQLscALPEL grammar.The results are shown in Figure 6. We
can observe a wide variation of sizes. Nested queries with compound
predicates, e.g. Q2, Q7, Q19, leads to an explosion of alternatives.
This is to be expected, because the grammar produced contains sets
of literal classes from which all subsets are considered for template
construction. This results in a combinatorial explosion of templates.
They form a nice target to study robustness of relational optimizers.

3Space limitations prohibits an explanation of all its functional components

DBTest’18, June 15, 2018, Houston, TX, USA

00 0 Wesbly | O Areye | O Poster po03wan | SCALsc X | (] Compe | @ MM Boots: | [l Bet Boot | @ Acia | @hew |+
)3 C @ D localhost:5000/querie: m - Qf ¥ » =
scolel Home Projecs~ Poducts~ Serices Contac admin «
Response i forcomporents of‘star’
Lab books e L °) L]
e
demo ~
’ J N at
quayd~ e 0 . o
Summe I L) £ U LA
Summary . o e (]
£ s o 0 s °
Scalpa 8
£
[o
Query pool
i
00
Resul set
Analylics o
o 0 °
Modiy °

expasinariain ime ne

Figure 4: Query space provenance

Component impact on average response time
I_prj : |_returnfla
|_linestatus

sum(l_quantit

Descr: sum(_extendedprice * {1 - |_discount} * (1 +
|_tax]) AS sum_charge
Ratio: 32.243

Queries: [43, 58]
34,41, 42, 48, 48, 61, 62)

avg(l_discoun
count(*) AS ¢
table : lineitem

_and : |_shipdate
|_groupby : |_retur
I_linestatus
|_orders : |_retun

|_linestatus
t

T T T t
-2000 o 2000 4000 6000 8000 10000 1200

Figure 5: Component analysis

tag templates space | tag templates space
Q1 40 9207 | Q12 8484 162918
Q2 58160 6354837405 | Q13 16 81
Q3 240 29295 | Q14 6 21
04 28 81 | Q15 40 372
Q5 108 96579 | Q16 608 25515
06 4 15 | Q17 26 81
Q7 >100K - | Q18 576 43659
Q8 480 5478165 | Q19 >100K -
Q9 1512 3528441 | Q20 320 3339.0
Q10 384 722925 | Q21 18464 4255065
Q11 162 7203 | Q22 156 777

Figure 6: TPC-H query space

To control such explosion the user can take the scalpel grammar
and fuse rules (manually) to reduce the search size. Alternatively,
the SQL to SQLscALPEL compiler can be instructed to limit the
size of lexical token classes considered or focus on conjunctive
predicates only.

6.3 The real world

Another driving example for SQLSCALPEL was a problematic cus-
tomer query. It was a typical BI query, generated by a front-end tool

M.L. Kersten, P. Koutsourakis, and Y. Zhang

and heavily relying on expanding (inline) views. The result was
a single SQL statement of ~2K lines (~ 110 K characters), which
included 68 subqueries, > 100 (dis/con)junctive terms and much
of the SQL functionality, i.e. group-by, order-by, case-expressions,
window-based aggregates, casting, etc.

The query complexity is large enough to make it hard for a
human to identify what portion is detrimental to the performance.
The SQLscALPEL parser inferred a grammar with 992 rules, 685
literals, and >100K query templates. The complexity of this query
drove query morphing towards pruning, where a binary dissection
of the query into its components should provide the answer a.s.a.p.

7 SUMMARY AND CONCLUSIONS

In this paper we have introduced discriminative performance bench-
marking as a next major step in database performance analysis.
We provided a progress report on the SQLSCALPEL project, a sharp
tool in the hands of system architects. It allows them to describe
in a concise manner a large query workspace and rely on guided
randomized walks to localize performance pitfalls quickly.

Acknowledgments

This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no. 732366 (ACTiCLOUD).

REFERENCES

[1] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Ozsu. QAGen: Gen-
erating query-aware test databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’07, pages 341-352,
New York, NY, USA, 2007. ACM.

[2] Orri Erling et al. The ldbc social network benchmark: Interactive workload. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD 15, pages 619-630, New York, NY, USA, 2015. ACM.

[3] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73-169, June 1993.

[4] Hai-Feng Guo and Zongyan Qiu. Automatic grammar-based test generation. In
Hiisnii Yenigiin, Cemal Yilmaz, and Andreas Ulrich, editors, Testing Software and
Systems, pages 17-32, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[5] Jayant R. Haritsa. The picasso database query optimizer visualizer. PVLDB,
3(2):1517-1520, 2010.

[6] Jayant R. Haritsa. Query optimizer plan diagrams: Production, reduction and
applications. In Serge Abiteboul, Klemens Bshm, Christoph Koch, and Kian-Lee
Tan, editors, Proceedings of the 27th International Conference on Data Engineer-
ing, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 1374-1377. IEEE
Computer Society, 2011.

[7] Johannes Hartel, Lukas Hartel, and Ralf Limmel. Test-data generation for xtext.
In Benoit Combemale, David J. Pearce, Olivier Barais, and Jurgen J. Vinju, editors,
Software Language Engineering, pages 342-351, Cham, 2014. Springer Interna-
tional Publishing.

[8] Ralf Lédmmel and Wolfram Schulte. Controllable combinatorial coverage in
grammar-based testing. In M. Umit Uyar, Ali Y. Duale, and Mariusz A. Fecko,
editors, Testing of Communicating Systems, pages 19-38, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[9] William M. McKeeman. Differential testing for software. DIGITAL TECHNICAL
JOURNAL, 10(1):100-107, 1998.

[10] Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen. Analysis of tpc-ds: The
first standard benchmark for sql-based big data systems. In Proceedings of the
2017 Symposium on Cloud Computing, SoCC 17, pages 573-585, New York, NY,
USA, 2017. ACM.
Donald R. Slutz. Massive stochastic testing of SQL. In Ashish Gupta, Oded
Shmueli, and Jennifer Widom, editors, VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998, New York City, New York,
USA, pages 618-622. Morgan Kaufmann, 1998.
Kamal Z. Zamli, Mohammad F.J. Klaib, Mohammed 1. Younis, Nor Ashidi Mat Isa,
and Rusli Abdullah. Design and implementation of a t-way test data generation
strategy with automated execution tool support. Information Sciences, 181(9):1741
- 1758, 2011.

—_
o

[12

	Abstract
	1 Introduction
	2 Background
	3 System overview
	3.1 System architecture
	3.2 Query space
	3.3 SQL to SQLscalpel translation
	3.4 Running experiments

	4 Morphing queries
	5 Query space exploration
	5.1 Simulated annealing

	6 Evaluation
	6.1 The platform
	6.2 TPC-H
	6.3 The real world

	7 Summary and conclusions
	References

