
SmallTail: Scaling Cores and Probabilistic Cloning
Requests for Web Systems

Ewnetu Bayuh Lakew∗, Robert Birke†, Juan F. Pérez‡, Erik Elmroth∗ and, Lydia Y. Chen§

∗Umeå University, Umeå, Sweden. Email: {ewnetu,elmroth}@cs.umu.se
†ABB Research, Baden-Dättwil, Switzerland. Email: robert.birke@ch.abb.com

‡Universidad del Rosario, Bogotá, Colombia. Email: juanferna.perez@urosario.edu.co
§IBM Research Zurich, Rüschlikon, Switzerland. Email: yic@zurich.ibm.com

Abstract—Users quality of experience on web systems are
largely determined by the tail latency, e.g., 95th percentile. Scaling
resources along, e.g., the number of virtual cores per VM, is
shown to be effective to meet the average latency but falls short
in taming the latency tail in the cloud where the performance
variability is higher. The prior art shows the prominence of
increasing the request redundancy to curtail the latency either
in the off-line setting or without scaling-in cores of virtual
machines. In this paper, we propose an opportunistic scaler,
termed SmallTail, which aims to achieve stringent targets of
tail latency while provisioning a minimum amount of resources
and keeping them well utilized. Against dynamic workloads,
SmallTail simultaneously adjusts the core provisioning per VM
and probabilistically replicates requests so as to achieve the tail
latency target. The core of SmallTail is a two level controller,
where the outer loops controls the core provision per distributed
VMs and the inner loop controls the clones in a finer granularity.
We also provide theoretical analysis on the steady-state latency
for a given probabilistic replication that clones one out of N
arriving requests. We extensively evaluate SmallTail on three
different web systems, namely web commerce, web searching,
and web bulletin board. Our testbed results show that SmallTail
can ensure the 95th latency below 1000 ms using up to 53%
less cores compared to the strategy of constant cloning, whereas
scaling-core only solution exceeds the latency target by up to
70%.

I. INTRODUCTION

On-line interactive services have become indispensable for
today’s business and private users. It is of paramount im-
portance for on-line services to ensure that the latency is
satisfactory at all times. Delay in the latency can cause not
only significant financial losses but also degrade user quality
of experience. Back in 2008, Amazon estimated [1] that a
latency delay of 100 millisecond can cause 1% drop of its
sales. A recent study from Akamai [5] shows that one second
delay in page response can result in 7% loss in conversions for
e-commerce. Meanwhile, user’s quality of experience is often
decided by tail latency values, e.g., 95th percentile, instead of
average latency values.

The long standing challenge to manage the latency for on-
line services is the workload variability, i.e., users requests
exhibit a high time variability. In the era of cloud computing,
such an issue is largely addressed by vertical or horizontal
resource scaling, i.e., adjusting the number of either virtual
cores or virtual machines respectively [27], [43], [32]. On the
one hand, scaling Virtual Machines (VMs) is more suitable for

stateless services that do not require closed synchronization
across VMs and where the time overhead to spawn a VM
on demand is in the order of minutes. Pointed by numerous
studies, simply provisioning a higher number of VMs may not
be a cost-effective solution to guarantee, particularly, the tail
latency [14], [18] because of the high performance variability
in the Cloud [51], stemming from the resource contention
with co-located users coupled with a high sensitivity to small
variations in the system. On the other hand, scaling virtual
cores is more suitable for stateful services, e.g., back-end DBs,
and incurs lower provisioning overhead, which conveniently
renders itself for fine-grained control against the highly volatile
workload and large-scale stateful database applications [21].
Moreover, allocating more cores to a single VM increases the
opportunities to obtain physical resources, against co-located
VM.

Recently, it is shown to be effective to control the tail
latency by introducing workload redundancy [16], i.e., proac-
tively cloning arriving requests by an integer factor, sending
to different VMs, and returning only the fastest request. Most
interactive systems then leave the rest of redundant requests to
complete due to the complexity of implementing cancellation
policies and thus result into a significant load increase [48].
For instance, having a cloning factor of two easily doubles the
system load. Consequently, workload redundancy is deemed
expensive and it is an utter challenge to determine the optimal
cloning level that strikes the optimal trade-off between the
latency gain and additional processing overhead. Moreover,
an implicit underlying assumption of cloning requests is that
a sufficient number of VMs exist, strongly arguing for co-
optimization of virtual resources and request clones in curtail-
ing latency.

However, few prior art simultaneously explore resource, i.e.,
only VM, and workload redundancy, either focusing on off-
line setting in real testbed [35] or evaluated on-line solution in
a simulation environment [38], [37] where the whole incoming
requests are cloned by an integral factor. It largely remains
unknown how scaling virtual cores and partial request cloning
can maintain the tail latency target for interactive web service
hosted on the Cloud. More importantly, it is crucial for
service providers to minimize the additional cost, e.g., the total
number of provisioned core, that occurs to prevent the loss
associated with latency violation.

 0

 2000

 4000

 6000

 8000

9
5
th

 R
e
s
p
o
n
s
e
 T

im
e
[m

s
]

100 Concurrent Users

 0

 2

 4

 6

0 10 20 30 40 50

C
a
p
a
c
it
y
 [
C

P
U

 c
o
re

s
]

Time [Minutes]

(a) Single VM.

Controller Manual Tuning

 0

 500

 1000

 1500

 2000

 2500

 3000

0 10 20 30

R
e

s
p

o
n

s
e

 t
im

e
 [

m
s
]

Concurrent Users
50 150 50

 0
 1
 2
 3
 4
 5
 6
 7

0 10 20 30

C
a

p
a

c
it
y
[C

P
U

 c
o

r
e

s
]

Time [Minutes]

(b) Multiple VMs.

Fig. 1: The tail latency under (a) single VM and (b) mutliple VMs. The former has constant arrival rate of 100 requests per
second and the number of cores is steadily increased. The latter has dynamic arrival rates and the number of cores is adjusted
by two approaches: the virtual controller, and manual-tuning (an off-line optimal solution).

In this paper, we address the following research questions:
(i) how to simultaneously provision virtual cores to VMs and
clone requests to achieve the target tail latency at a minimum
provisioning cost, (ii) what is the optimal cloning factor so
as to harvest the latency gain without excessive processing
overhead of redundant requests. To such an end, we propose
a novel probabilistic cloning strategy, which only allows to
clone a fraction of the total requests to limit the cloning
overhead, i.e., only portion of N arriving requests (called clone
factor) which are deemed enough to meet the tail latency is
cloned. The clone factor is periodically updated to dynamically
adapt to changes in the system. We derive the theoretical
latency analysis on the probabilistic cloning in steady state. We
also develop a two-layer on-line controller, termed SmallTail,
whose outer control loop adjusts the virtual core provisioning
in a distributed fashion and whose inner loop decides the
probabilistic clone factors in a finer time granularity. We
extensively evaluate SmallTail on three web services, namely
RUBiS [7], RUBBoS [6], and SOLR [2], and four workload
traces. Our results show that SmallTail can effectively adhere
to meet the stringent tail latency target and consume a lower
number of resources and power consumption, compared to the
strategy that combines core scaling and integer cloning.

Our contributions are analytical and practical. We propose
a novel probabilistic cloning strategy that allows a fraction of
requests to be cloned. Its effectiveness is rigorously proven
by the latency models. We develop a first of its kind on-
line controller that combines both virtual core allocation and
request cloning in fine granularity. Our controller is extensively

evaluated on multiple applications and workload patterns,
against alternatives that do not leverage the feature of dynamic
cloning.

II. MOTIVATION

Prior to introducing SmallTail, we first present a small
scale motivation study to illustrate the effectiveness of scaling
virtual cores only in mitigating the tail latency. We conduct
two types of experiments, one with single VMs and one with
multiple VMs.

Single VM. We deploy RUBiS [7], a web shopping bench-
mark, on a single VM in our private cloud. The testbed is
detailed in Section VI. We generate a constant arrival rate,
i.e., 100 requests per second, for a duration of 50 minutes.
We increase the number of cores in a step-wise manner, as
shown in the top plot of Fig. 1a. The top plot in the figure
depicts the 95th percentile (the tail latency) while the bottom
plot depicts the allocated cores. One can clearly see that the tail
latency decreases with the increasing number of virtual cores,
but with decaying marginal gain. The latency improvement
between 5 and 6 virtual cores is very minimum, compared to
the difference between 2 and 3 cores. If today’s latency target
for the 95th percentile is 1000 ms, scaling virtual cores does
not seem to meet the target with just a low number of virtual
cores.

The reason behind is that the RUBiS VM is co-located
with other VMs, which are CPU hungry, and the resulting
performance variability per VMs and per core is high. The
effective capacity received per VM is not linearly proportional

to its allocation of virtual cores. Consequently, increasing the
number of cores is more effective when the number of virtual
cores is low (2-3) but becomes less effective for larger number
of cores.

Multiple VMs. Now we move into the cluster scenario
where three RUBiS VMs are serving requests that arrive with
a step-wise time-varying pattern as indicated on the upper
x-axis of Fig. 1b, ranging between 50 to 100 requests per
second. The performance target is to ensure no more than 5%
of requests has a latency longer than 1000 milliseconds, i.e.,
the 95th percentile needs to be lower than 1000 milliseconds.
Each VM is subject to emulated interference and we refer the
readers to Section VI for details. As the workload dynamically
varies, we adjust the number of virtual cores per VM. We use
two approaches to adjust the cores on each VM: (i) manual-
tuning, and (2) the control mechanism proposed in [29]. We
plot their latency of 95th percentile (top row) and the average
number of allocated cores (bottom row) on the three VMs
in Fig. 1b.

In manual-tuning, we run the workload a few times and
manually tweak the virtual core allocations so as to find the
optimal allocation of virtual cores. In contrast to the single
VM result, the resulting tail latency here is better by manually
tuning the cores on the three VMs and load balancing the
requests in a round robin fashion. However, it rarely meets
the target of 1000 ms. One can see the manual-tuning as
the optimal solution that one can achieve by scaling the
number of virtual cores only. As for the vertical controller,
its 95th percentile is consistently lower than the manual-
tuning due to its reactive nature while the target is being met
only occasionally. From these results, we can clearly see the
limitations of scaling virtual resources, be it virtual cores or
machines, in meeting the stringent target of the tail latency.

Our objective in this paper is to introduce another control
variable, the clone factor, to further strengthen the power of
resource scaling, particularly virtual scaling on virtual cores.

III. RELATED WORK

On-line user facing applications deployed in the cloud
manifest variable performance in their life time due to various
reasons such as variability in workload patterns [15], [25],
resource contention due to co-located workloads [45], [17],
[28], and heterogeneity in the infrastructure [18], [39]. Dif-
ferent techniques were proposed to mitigate such performance
variability: (i) scaling resources, (ii) prioritization, and (iii)
more recently query cloning.

Scaling Resources. A number of studies have centered on
elastic resource provisioning that either determines the size of
a VM by adjusting the different resource types (e.g., CPU,
memory)–vertical scaling– [27], [43], [23], [29] or
the number of VMs–horizontal scaling– [32], [36],
[31] such that the costs of operation, energy, and performance
penalty are minimized. Vertical elasticity is about adding or
removing resources (e.g., cores, memory) from a VM at a
fine granularity, both in amount and time. Horizontal elasticity
consists in adding or removing VMs to or from an application,

Clone-aware

Load balancer

Query Clone Controller

Query cloner

Sensor

 cloned

query

Requests

Physical Machine

Application Performance

 Query

query

 Application performance

VMi

Autoscaling Controller

Physical Machine

VMn

Autoscaling Controller

Actuator

Sensor Actuator

Probablistic

 cloner

clone factor

Performance target

Performance target

Fig. 2: SmallTail’s architecture.

e.g., based on the number of end-users. However, almost all
resource scaling approaches target average system behaviors
focusing on different Key Performance Indicators (KPIs) (e.g.,
latency, resource utilization, number of requests arriving at
the system, number of jobs done) with little attention to tail
behavior.

Prioritization. Applications are divided into priority classes
and capacities are distributed among applications based on
their priority during resource shortage [26], [33], [28], [46].
Kleinrock [26] studied time-sharing of a Physical Machine
(PM) among processes with different priorities in non-
virtualized environments. Padala et al. [33] present a control-
theoretic approach that dynamically allocates capacity in order
to meet performance targets of different services running on
different VMs and proportionally distributes resources based
on fixed weight. The authors in [28], [46] proposed a mech-
anism to distribute resources based on observed performance
besides fixed weight during resource shortage. The underlying
assumption in these works is that the resource demand exceeds
the infrastructure limit. As a result these works are orthogonal
to our approach.

Query Cloning. Cloning queries speculatively has been
shown to be effective strategy to improve the latency of
interactive web services [37], [38], [50] as well as big data
platforms [12], with the implicit assumption of sufficient
capacity to accommodate clones. Recently proposed queueing
models [20], [41] try to identify the optimal cloning levels that
achieve the minimum latency. All existing approaches proac-
tively clone arriving requests by an integer factor, sending to
different VMs, and returning only the fastest request. Such
strategy of cloning all incoming queries puts much pressure
and cost on the system as the rest of redundant requests
are left to complete due to the complexity of implementing
cancellation policies resulting a significant load increase in
the system [48].

In this work we focus on determining the optimal fraction
of requests that should to be cloned that strikes the trade-off
between the latency gain and additional processing overhead.

IV. SMALLTAIL

This section formally introduces the key components of
SmallTail. We consider a cloud infrastructure that hosts inter-

active services, each with different characteristics, as well as
variable and unpredictable workload dynamics. Each service
has a Service Level Agreement (SLA) that stipulates a Service
Level Objective (SLO) and optionally minimum and maximum
resource requirements. The minimum resource constraints are
often used to allow each service to maintain some functionality
at all times. The maximum limits are usually set to shield the
user from unexpectedly high costs due to service malfunc-
tioning or an attack. For example the minimum or maximum
resource requirements can be expressed as number of cores
per instance or total number of instances. The SLO is a target
value for a KPI for example, a specific value for average or
tail response time of the system. Even though the focus of
this work is for tail latency, the approach can be applied for
median, average or quartiles. The goal is to continuously adjust
the allocated resource levels and clone factor, without human
intervention, to drive KPIs toward their targets. Specifically,
the resource allocation strategy should be capable of allocating
just the right amount of resources for a service composed
of multiple instances at the right time in order to meet its
respective performance target, avoiding both resource under-
and over-provisioning while the replication factor augments
the performance variations across the instances.

A key feature of this system is that it is subject to a time
varying demand pattern, i.e., the arrival rate of queries λ (t)
varies with time t and with potentially variable load for each
request, i.e., variable resource requirement for each request. At
any given time t, the system consists of V (t) VM instances,
each with C(t) cores processing µ requests per second (i.e, µ

is the service rate). We further assume that all VMs are replicas
of the same service and capable of executing all queries.
Queries arrive at a central query clone controller, where they
can be cloned before being dispatched to the next available
instance, as shown in Fig. 2. The query clone controller also
takes care of returning the response to the client once the first
clone completes, and initiates the cancelling of outstanding
clones if such a policy is in place.

To maintain the tail latency target, the system is able to
scale along three dimensions each at different time scale: (i)
the number of clones, or clone factor, r(t), (ii) the number
of virtual cores per instance, C(t), and (iii) the number of
provisioned VMs, V (t). In this work we focus on the first
two dimensions and assume enough number of instances
can be spawned when resources in the physical machine are
not sufficient to meet the demand. The third dimension is
left as future work. In what follows, we explain the design
considerations regarding these two control dimensions. For
simplicity we drop the index t unless it is explicitly required.

Query Cloning. Cloning queries has been proposed as a
solution to mitigate slow execution, either reactively after
experiencing long delays, or proactively upon the arrival of
queries [37], [12]. All clones are sent to different VMs so as
to best take advantage of the variability across VMs, i.e., to
increase the probability of a clone being executed on a “fast”
VM. For each query, as soon as one of its clones completes,
the result is returned to the user. Existing approaches clone

all arriving requests by an integer factor. In this work, we
particularly focus on probabilistic query cloning, i.e., a query
is replicated with some probability. The intuition behind
probabilistic query cloning is that cloning all requests may
induce further performance degradation due to load increase
in the system and the performance of some requests may
be guaranteed even without cloning due to their light-weight
nature.

To adapt to the dynamic load and VM conditions, the
query clone manager continually adjusts the cloning
probability using a simple reactive step control. The controller
periodically checks the KPI value every ∆ seconds, compares it
to its previous value and modifies accordingly the clone factor
r by±r∆. If the KPI trend is improving the controller continues
modifying r in the same increasing/decreasing direction as in
the previous control interval. If the trend is worsening, the
controller modifies r in the opposite direction. After having
modified r the controller uses clipping to limit r within
rmin < r < rmax. Once the value of r is determined, each
incoming request is replicated randomly with probability r for
the next ∆ seconds. In our experiments we set ∆= 0.5 seconds
and r∆ = 0.25 (these values were determined experimentally).

Vertical Autoscaling Controller. The vertical autoscaling
controller is based on our previous works [27], [29]. The
controller takes a target latency value and observed average
latency of the system as input during an interval and outputs
the amount of cores required for the next interval to meet the
target. Its goal is to continuously adjust the allocated resource
levels, without human intervention, to drive the observed
value toward the target irrespective of variations in workload
patterns. Specifically, the resource allocation strategy tries to
allocate just the right amount of resources for a service at
the right time in order to meet its respective performance
target, avoiding both resource under- and over-provisioning.
The controller is slightly modified to control the tail latency
instead of the mean in collaboration with the query cloning
controller.

The vertical autoscaling controller loosely follows a Mon-
itor Analyze Plan and Execute with Knowledge (MAPE-K)
loop based on self-adaptive software terminology [24]. The
monitor periodically collects measurements such as average
and tail latency and resource utilization. The period between
observations is also used as the period between activations
of the controller. The analysis and planning phase is the
main part of the controller where the computation of CPU
cores for the next time interval is predicted based on previous
observations. Execution consists of configuring the hypervisor
to effect the computed resources. Previous monitoring data
is used to fit the model parameters, which represent the
knowledge component in the MAPE-K loop. To enforce the
control decision and easily enable vertical elasticity, we used
the Xen hypervisor [13] which supports CPU hotplugging
without the need to restart the application. In our experiments,
we recompute capacity to the application periodically, with 10
seconds interval, which is short enough to make the system
reactive and long enough to observe the effects of the new

capacity allocation on the performance of the service [34].

V. PROBABILISTIC CLONING

To capture the impact of partial replication we develop a
queueing model that explicitly considers that each incoming
request is cloned with probability p, i.e. p = r−1. With this
model we are able to obtain the mean request response time,
where both cloned and non-cloned requests contribute to the
overall result.

A. Definitions

We assume requests arrive according to a Poisson process
with arrival rate λ . Each request is replicated with probability
p, whereas with probability q = 1− p no cloning is applied.
Each request is processed by one of C available servers (total
number of cores) in first-come-first-served (FCFS) order. If all
servers are busy, requests (and their clones) are kept in a queue
where they wait for the next available server. The processing
time of a single clone is exponentially distributed with mean
1/µ .

B. Building and Solving the Model

To obtain the mean response time we setup a Markov chain
where the state is the number of clones in the system, both in
processing and waiting. The state space is thus {0,1,2, . . .},
and the transition rates among states can be describe with the
generator matrix Q given by

Q=

◦0 λq λ p
µ ◦1 λq λ p

2µ ◦2 λq λ p
.

Cµ ◦ λq λ p
Cµ ◦ λq λ p

.

. (1)

The entries above the diagonal of Q show that from a state
with k clones, the system moves to a state with k+2 clones
with rate λ p as the incoming request is replicated with
probability p. Instead, with rate λq the system moves to state
k+1 as no replication is applied to the incoming request. The
entries of Q below its diagonal show the rate at which requests
complete service. In a state with k clones, a request completes
service with rate min{k,C} as there can be at most C requests
in service. The symbols ◦ simply represent the elements in the
diagonal that make the row sums of Q equal to zero.

From the matrix Q in (1) we aim to obtain the steady-state
probabilities {πk}k≥0, where πk is the probability of finding
the system with k clones. To this end we group together the
states in pairs to make levels, such that level 0 is made of
state 0, level 1 is made of states 1 and 2, and in general
level k is made of states 2k−1 and 2k. From here onward we
assume that the number of servers C is even, but the steps
can be easily adapted to the case with an odd number of
servers. By grouping states in levels we end up with a quasi-
birth-and-death process (QBD) [30] where transitions are only

allowed among states in adjacent levels. Since levels are made
of multiple states, transitions rates among adjacent levels are
put together into square matrices with size equal to the number
of states per level, i.e., 2 in this case. Although we can define
these matrices for all levels, in the interest of space we focus
on the levels k ≥ C/2, where a repetitive pattern starts such
that transitions from level k to levels k− 1, k, and k+ 1 are
ruled by matrices A−1, A0, and A1, respectively, given by

A−1 =

[
0 Cµ

0 0

]
, A0 =

[
◦ λq

Cµ ◦

]
, A1 =

[
λ p 0
λq λ p

]
.

As with the matrix Q, we also group together the stationary
probabilities {πk}k≥0 by levels such that θ0 = π0 and θk =
[π2k−1 π2k] for k ≥ 1.

We can now find the probabilities {πk}k≥0 in two steps.
First, we must find the rate matrix R as the minimal non-
negative solution to the matrix equation

A1 +RA0 +R
2A−1 = 0.

This matrix allows us to write the stationary probabilities for
levels k ≤C/2 as

θk = θC/2Rk−C/2, k ≤C/2,

thanks to the matrix-geometric property [30], which means
that it is sufficient to find θC/2 to determine all vectors θk
for levels k≥C/2. The second step is to use the matrix R to
solve a linear system associated to the levels {0,1, . . . ,C/2} to
find the vectors θk for these levels. We omit the details in the
interest of space, but we highlight that this is a linear system
of size C+1 that has the same block-tridiagonal structure as
Q and can therefore be solved very efficiently even for very
large values of C.

C. Obtaining the Mean Response Time

Having found the vectors {θk}k≥0, and thus the stationary
probabilities {πk}k≥0, we can now determine the mean re-
sponse time. We start by determining the probability that a
request must wait before being served as

γ = ∑
k≥C

πk = πC + ∑
k≥1
θC/2+k1= θC/2(I−R)−11−πC−1,

(2)

where the last equality results from the matrix-geometric
property mentioned above. The response time experienced by a
request will depend on the state in which it finds the system.
Thanks to the PASTA property [49] the probability that an
incoming request finds the system k is precisely πk. Thus, the
probability that a request finds at least two idle servers is

C−2

∑
k=0

πk = 1− γ−πC−1.

In this case the response time is made of the service time only,
and is given by

p
1

2µ
+q

1
µ
,

since with probability p the request is replicated and the mean
service time is 1/2µ , whereas with probability q the request is
not replicated and its mean service time is simply 1/µ . Instead,
the request finds at most one idle server with probability γ +
πC−1, and in this case its service time is given by

p
(

1
C

1
µ
+

C−1
C

1
2µ

)
+q

1
µ
.

This expression captures that if a request is replicated, with
probability p, its first replica may finish before any other
request in service with probability 1/C, and in this case the
mean service time is simply 1/µ . Alternatively, any other
request finishes service before, with probability (C−1)/C and
in this case the mean service time is 1/2µ . As before, if the
request is not replicated, with probability q, its mean service
time is simply 1/µ . Finally, if the request must wait, finding
C+k requests in the system, it must wait for the completion of
k−C+1 requests before it can start service. As each request
service completion takes on average 1/Cµ time, the mean
waiting time is

∑
k≥C

πk
k−C+1

Cµ
.

The following lemma puts everything together.

Lemma 1. The mean response time in a system with partial
replication and the characteristics described in Section V-A is
given by

(1− γ−πC−1)

(
p

1
2µ

+q
1
µ

)
+

(γ +πC−1)

(
p
(

1
C

1
µ
+

C−1
C

1
2µ

)
+q

1
µ

)
+

∑
k≥C

πk
k−C+1

Cµ
.

VI. EXPERIMENTAL SETUP

Hardware and Instance Setup. The experiments were
conducted on three PMs each equipped with a total of
32 cores1 and 56 GB of memory. To emulate a typical cloud
environment and easily enable vertical elasticity, we used
the Xen hypervisor [13]. An instance of the application was
deployed in each PM. Each instance of the tested application
was deployed with all of its components, such as web servers
and database servers, inside its own VM as is commonly done
in practice [44], e.g. by using a LAMP stack [10].

Benchmark Applications. We used three different bench-
mark applications: RUBiS [7], RUBBoS [6] and SOLR [2]
which simulate a web commerce, bulletin board and web
searching system, respectively. All three are widely-used in-
teractive cloud benchmark applications – see e.g., [42], [47],
[19], where computations are only performed as a result of
a user request. We used as web-server Apache for all three
applications. Each instance was configured as follows. The
Apache MPM prefork module, which is thread safe and

1Two AMD OpteronTM 6272 processors, 2100 MHz, 16 cores each, no
hyper-threading.

therefore suitable to be used with PHP applications, was
enabled. We set parameters regarding Apache processes (e.g.,
MaxClients and ServerLimit) to relatively high values.
This value is well above the number of concurrent requests
that Apache has to deal with during any of the experiments
to prevent Apache from becoming a bottleneck.

Collocated applications. At each PM we collocated differ-
ent micro-benchmarks which put pressure on different resource
types such as CPU, memory, network and IO to make the
setup as close as possible to the real cloud environment.
To load the CPU, we used the CPU-bound benchmark from
the SysBench [9] package. To pressure the memory man-
agement system, we used STREAM [8]. For disk IO and
network we used the Flexible I/O (FIO) [4] benchmark
and the netperf [22] benchmark, respectively. We also use
another RUBiS instance as a background process to emulate a
cloud environment where different interactive applications are
deployed on the same machine.

While the actual load intensity for each type of back-
ground workloads was slightly varied to fit the applications
under study, the intensity remains constant across the differ-
ent cloning strategies, i.e. no, probabilistic and deterministic
cloning. For example, the collocated applications perform
similar operations during the run of the different cloning
strategies shown in Fig. 4a.

Workloads. The experiments were performed using the
four combinations of workloads shown in Fig. 3: predictable
vs unpredictable and high vs low loads. The predictable
workloads, see Figs. 3a and 3b, are based on traces collected
at the Wikipedia website [11] which show a typical, rather
smooth sinusoidal day-night pattern. These stand in contrast
to the bursty, difficult to predict traces, see Figs. 3c and 3d
collected during the FIFA world cup [3]. For each source we
randomly selected two days and scaled the corresponding trace
in time, from 24 hours to 2 hours, and space, i.e. number of
requests, to adapt to the different service times of the different
benchmarks. In particular we used the low-load traces with
RUBiS and SOLR, and the high-load traces for RUBBoS.

The workload was generated following a closed-system
model [40]. A closed user loop model is defined when the
arrival of new requests is only triggered by previous request
completions, followed by a delay according to thinktime.
The effective average request inter-arrival time is the sum of
the average thinktime and the average response time of the
application.

To emulate the users accessing the applications, we used
httpmon tool, a custom workload generator2, which supports
the closed-system model client behavior. The think-time of
each client was fixed at 1 second and the number of users
was varied following each workload trace.

Note that the workload generator, httpmon, sends
the request to the query clone manager or load
balancer, where requests are dispatched to each instance
according to the clone factor.

2https://github.com/cloud-control/httpmon

 0

 100

 200

0 20 40 60 80 100 120

R
e

q
u

e
s
t
s
[
p

e
r

s
e

c
o

n
d

]

Time [minutes]

(a) Wikipedia-low.

 200

 300

 400

 500

0 20 40 60 80 100 120

R
e

q
u

e
s
t
s
[
p

e
r

s
e

c
o

n
d

]

Time [minutes]

(b) Wikipedia-high.

 0

 100

 200

 300

0 20 40 60 80 100 120

R
e

q
u

e
s
t
s
[
p

e
r

s
e

c
o

n
d

]

Time [minutes]

(c) FIFA-low.

 0

 200

 400

 600

 800

0 20 40 60 80 100 120

R
e

q
u

e
s
t
s
[
p

e
r

s
e

c
o

n
d

]

Time [minutes]

(d) FIFA-high.

Fig. 3: Real-world workloads: predictable Wikipedia-based and unpredictable FIFA-based traces.

Metrics. The response time of a request is defined as
the time elapsed from sending the first byte of the request
to receiving the last byte of the reply. The average, and
95% response times were collected over 10 seconds. A rack-
mounted HP AF525A Power Distribution Unit (PDU) meter
was used to measure the power used by the servers. The pwoer
readings were extracted via Simple Network Management
Protocol (SNMP) from each server in 10 seconds intervals.

VII. EXPERIMENTAL EVALUATION

This section highlights the observations from the differ-
ent experiments when the query clone manager was
deployed in parallel with the vertical auto-scaling
controller. The KPI for the vertical auto-scaling
was set to the 95th percentile response time with a target of
1 second. An instance of the vertical auto-scaling
controller was deployed at each PM to manage the VM (or in-
stance) at that particular PM. The query clone manager
was configured and run with three different setups: no cloning
– r = 1 always–, deterministic cloning –r = 2 always– and
probabilistic cloning. We use the no cloning and deterministic
cloning as baselines. For each experiment we record the
response times, with a particular focus on the tail via the
95th percentile, the allocated cores across all instances, and
the overall power consumption. In particular here we consider
the dynamic power which is influenced by the system activity.
The total power would include also the aggregate idle power
of 336W.

A. RUBiS
The RUBiS benchmark emulates a web auctioning site

similar to eBay. We ran RUBiS using the low-load based
workloads. Fig. 4 presents results of the Wikipedia-based
workload, see Fig. 3a. The x-axis of Fig. 4a shows the elapsed
time since the start of the experiment, whereas the y-axis
measures the 95th percentile of the response time under the no,
deterministic, and probabilistic cloning. One can see that in all
cases vertical auto-scaling ensured a constant mean
performance across time even if the load was changing. How-
ever without cloning, vertical auto-scaling was not
able to meet the target of 1 second. Only when activating de-
terministic or probabilistic cloning it was possible to meet the
target. Cloning counters the performance variability observed
at the instances. This is limpid here. Indeed one can observe

No-clone Probablistic Deterministic

 0

 500

 1000

 1500

 2000

 3000

0 20 40 60 80 100 120
9

5
th

 R
T

 [
m

s
]

Time [Minutes]

(a) 95th tail response time.

 0

 2

 4

 6

 8

 10

 12

 14

.

N
o

.
o

f
c
o

re
s

Non−clone

Probablistic

Deterministic

(b) Cores.

 0

 100

 200

 300

 400

 500

 600

 700

 800

No−clone Probablistic Deterministic

P
o

w
er

 (
w

at
t)

Dynamic
Idle

(c) Power.

Fig. 4: RUBiS with 95th percentile target of 1 second under no
cloning, deterministic cloning, and probabilistic cloning and
Fig. 3a workload.

that from no cloning (r = 1 always) to deterministic cloning
(r = 2 always) to probabilistic cloning (mean r = 1.62) the 95th

percentile not only improves but also stabilizes. This can be
observed from the reduced oscillations in latency across time.
Probabilistic cloning exceeds deterministic cloning because
it tries to hit the sweet spot of countering the performance
variability and, as we see next, the increase in computational
demand.

The cost of cloning is shown in Fig. 4b, i.e. an increased de-
mand in computational resources and energy. Using no cloning
the number of cores allocated to RUBiS was 5.5. Deterministic
cloning doubles the total load across the instances. To cope
with this increase in computational demand, the vertical
auto-scaling more than doubles the assigned cores, i.e.
12.4 (+123%). Probabilistic cloning only clones on average
62% of the requests and hence stays in between, i.e. 10.1
cores (+83%). The increased computational demand translates
into an increase in the dynamic power consumption of the

No-clone Probablistic Deterministic

 0

 500

 1000

 1500

 2000

 2500

 3000

0 20 40 60 80 100 120

9
5

th
 R

T
 [

m
s
]

Time [Minutes]

(a) 95th tail response time.

 0

 1

 2

 3

 4

 5

 6

 7

.

N
o
.

o
f

c
o

re
s

Non−clone
Probablistic
Deterministic

(b) Cores.

 0

 100

 200

 300

 400

 500

 600

 700

No−clone Probablistic Deterministic

P
o
w

er
 (

w
at

t)

Dynamic
Idle

(c) Power.

Fig. 5: RUBiS with 95th percentile target of 1 second under no
cloning, deterministic cloning, and probabilistic cloning and
Fig. 3c workload.

PMs, see Fig. 4c. No, deterministic and probabilistic cloning
consume 313W, 385W (+23%) and 327W (+4.5%) of dynamic
power, respectively. The discrepancy between the increase
in cores and power consumption is due to the vertical
auto-scaling overestimating the computational demand
of probabilistic cloning. Indeed the number of cores only
sets an upper bound on the dynamic power consumption,
but the effective number of used cores (and dynamic power
consumption) might be lower. Aggregating the results of the
figures, one can see that probabilistic cloning is able to
achieve the best response times, while saving on computational
demand and consumed power, i.e. −18.0% cores and −15.2%
dynamic power with respect to deterministic cloning.

The Wikipedia-based workload is rather smooth which eases
the control. To present a more challenging yet real-world
inspired case, we run RUBiS with the FIFA-based workload
shown in Fig. 3c. This workload includes some load spikes.
Fig. 5a depicts the response time results. We see that even
when the load bursts arrive the vertical auto-scaling
is able to well control the response times, but cloning is
necessary to achieve the target of 1 second for the 95th

percentile. Due to the toggling nature of our simple control,
the cloning manager slightly underestimated the required
cloning (mean r = 1.45) and deterministic cloning slightly
outperforms probabilistic cloning in the lower load phase. The
corresponding costs are shown in Figs. 5b and 5c. We see that
probabilistic cloning saves on resources, i.e. 5.4 cores (+81%),
and power, i.e. 305W (+9.6%) over deterministic cloning, i.e.
6.9 cores (+131%) and 317W (+13.9%). Probabilistic cloning
is able to achieve the response time target at a reduced cost in

No-clone Probablistic Deterministic

 0

 500

 1000

 1500

 2000

 2500

 3000

0 20 40 60 80 100 120

9
5

th
 R

T
 [

m
s
]

Time [Minutes]

(a) 95th tail response time.

 0

 1

 2

 3

 4

 5

 6

.

N
o
.

o
f

c
o

re
s

Non−clone
Probablistic
Deterministic

(b) Cores.

 0

 100

 200

 300

 400

 500

 600

 700

 800

No−clone Probablistic Deterministic

P
o
w

er
 (

w
at

t)

Dynamic
Idle

(c) Power.

Fig. 6: RUBBoS with 95th percentile target of 1 second under
no cloning, deterministic cloning, and probabilistic cloning
and Fig. 3b workload.

No-clone Probablistic Deterministic

 0

 500

 1000

 1500

 2000

 2500

 3000

0 20 40 60 80 100 120

9
5

th
 R

T
 [

m
s
]

Time [Minutes]

(a) 95th tail response time.

 0

 1

 2

 3

 4

 5

 6

.

N
o

.
o

f
c
o

re
s

Non−clone
Probablistic
Deterministic

(b) Cores.

 0

 100

 200

 300

 400

 500

 600

 700

No−clone Probablistic Deterministic

P
o

w
er

 (
w

at
t)

Dynamic
Idle

(c) Power.

Fig. 7: RUBBoS with 95th percentile target of 1 second under
no cloning, deterministic cloning, and probabilistic cloning
and Fig. 3d workload.

terms of both cores (−21.9%) and dynamic power (−3.7%).

B. RUBBoS

Here we test SmallTail against the RUBBoS benchmark
which emulates a bulletin board news forum similar to the
slashdot website. This benchmark is able to sustain higher

No-clone Probablistic Deterministic

 0

 500

 1000

 1500

 2000

 2500

 3000

0 20 40 60 80 100 120

9
5

th
 R

T
 [

m
s
]

Time [Minutes]

(a) 95th tail response time.

 0

 2

 4

 6

 8

 10

 12

.

N
o
.

o
f

c
o

re
s

Non−clone

Probablistic

Deterministic

(b) Cores.

 0

 100

 200

 300

 400

 500

 600

 700

No−clone Probablistic Deterministic

P
o
w

er
 (

w
at

t)

Dynamic
Idle

(c) Power.

Fig. 8: SOLR with 95th percentile target of 1 second under no
cloning, deterministic cloning, and probabilistic cloning and
Fig. 3b workload.

rates under the same resources as RUBiS. Hence here we used
the high load traces.

Figs. 6a and 7a depict the 95th percentile response time
under our three cloning strategies. Again cloning is essential
in achieving the target under both the Wikipedia- and FIFA-
based workloads. The gains of probabilistic cloning over
deterministic cloning are −28.1% cores and −4.9% dynamic
power, and −9.9% cores and −1.2% dynamic power for the
Wikipedia and FIFA trace, respectively, see Figs. 6b, 6c, 7b
and 7c.

Comparing RUBBoS against the RUBiS results, we see that
here the impact of cloning is higher. We observe a larger
difference between no cloning and cloning results. This stems
from the fact that RUBBoS requests are subject to a higher
variability. Indeed the coefficient of variation for RUBBoS is
1.55 against 1.41 for RUBiS. For example comparing Fig. 5a
and Fig. 7a, probabilistic cloning on RUBBoS is able to
achieve −43.2% reduction in the 95th percentile of response
time against the −37.8 reduction obtained on RUBiS.

C. SOLR

SOLR is a web searching application based on the Apache
Lucene library which we set to work on a DB populated offline
by crawling 50000 random webpages. Figs. 8 and 9 summa-
rize the results. Cloning is key to achieve the target. Here
probabilistic cloning performs even slightly better than in our
previous experiments by not only using less cores and power,
but also achieving lower response times than deterministic
cloning. In case of the FIFA-based trace, probabilistic cloning
lowers the 95th percentile response time by −25.9% and the
costs by −53.7% and −6.6% against deterministic cloning for

No-clone Probablistic Deterministic

 0

 500

 1000

 1500

 2000

 2500

 3000

0 20 40 60 80 100 120

9
5

th
 R

T
 [

m
s
]

Time [Minutes]

(a) 95th tail response time.

 0

 1

 2

 3

 4

 5

 6

 7

.

N
o
.

o
f

c
o

re
s

Non−clone
Probablistic
Deterministic

(b) Cores.

 0

 100

 200

 300

 400

 500

 600

 700

No−clone Probablistic Deterministic

P
o
w

er
 (

w
at

t)

Dynamic
Idle

(c) Power.

Fig. 9: SOLR with 95th percentile target of 1 second under no
cloning, deterministic cloning, and probabilistic cloning and
Fig. 3d workload.

computation and power demand, respectively. In the case of
the Wikipedia-based trace, these gains become even −40.8%
for response time, −35.7% for cores and −7.7% for dynamic
power.

We further observe that smoother loads ease the con-
trol leading to better results. Comparing the two types of
workloads across the three benchmark applications, once can
observe that in both the RUBiS and SOLR cases predictive
cloning achieves higher latency reductions in case of the
smoother Wikipedia-based load.

VIII. CONCLUSION

Guaranteeing the tail latency target is critical for users’
quality of experience when using cloud-based interactive ser-
vices. Due to the high performance variability caused by co-
locating workloads, scaling virtual resources is not sufficient
to meet stringent tail latency targets and proactively cloning all
requests to curtail latency is too costly. In this paper, we pro-
pose the novel concept of probabilistic request cloning, which
only replicate a fraction of arriving requests. We also develop
a controller, termed SmallTail, that dynamically orchestrates
vertical core scaling and probabilistic cloning for interactive
web systems. Given the tail latency target, SmallTail adjusts
the number of virtual cores in a coarser granularity, e.g.,
10 seconds, and the fraction of requests to be cloned in a
finer granularity, e.g., 0.5 seconds. We evaluate SmallTail on
three web systems, i.e., RUBiS, RUBoS, and Solr, under four
real-world traces, with the focus on latency fulfillment, core
allocation, and power consumption. Our evaluation results
show that SmallTail can maintain the tail latency according

to the target by using only half of the virtual cores that are
needed when deterministically cloning all requests.

ACKNOWLEDGEMENT

This research has received funding from the European Union’s
Horizon 2020 research and innovation program under Grant Agree-
ment no. 732366 (ACTiCLOUD).

REFERENCES

[1] Amazon latency study. Available online:https://blog.gigaspaces.com/
amazon-found-every-100ms-of-latency-cost-them-1-in-sales/, Last vis-
ited 2017-12-01.

[2] Apache Solr. Available online: http://lucene.apache.org/solr/, Last vis-
ited 2017-09-10.

[3] FIFA 1998 Web site Page View Statistics. Available online: http://ita.
ee.lbl.gov/html/contrib/WorldCup.html, Last visited 2017-09-10.

[4] Fio. Available online: https://github.com/axboe/fio, Last visited 2017-
09-10.

[5] How loading time affects your bottom line. Available online: https:
//blog.kissmetrics.com/loading-time/, Last visited 2017-12-01.

[6] RUBBoS. Available online: http://jmob.ow2.org/rubbos.html, Last vis-
ited 2017-09-10.

[7] RUBiS. Available online: http://rubis.ow2.org, Last visited 2017-09-10.
[8] STREAM. Available online: http://www.cs.virginia.edu/stream/, Last

visited 2017-09-10.
[9] Sysbench. Available online: https://www.howtoforge.com/

how-to-benchmark-your-system-cpu-file-io-mysql-with-sysbench,
Last visited 2017-09-10.

[10] Tutorial: Installing a LAMP web server. Available online: http:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-LAMP.html,
Last visited 2017-09-10.

[11] Wikipedia Access Traces. Available online: http://www.wikibench.eu/
?page id=60, Last visited 2017-09-10.

[12] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective
straggler mitigation: Attack of the clones. In USENIX NSDI, pages
185–198, 2013.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37, pages 164–177,
2003.

[14] M. Björkqvist, L. Y. Chen, and W. Binder. Opportunistic Service
Provisioning in the Cloud. In IEEE CLOUD, pages 237–244, 2012.

[15] M. C. Calzarossa, L. Massari, and D. Tessera. Workload characteriza-
tion: A survey revisited. ACM Comput. Surv., 48(3):48:1–48:43, Feb.
2016.

[16] J. Dean and L. A. Barroso. The tail at scale. ACM Commun., 56(2):74–
80, 2013.

[17] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-
aware cluster management. In ASPLOS, pages 127–144, 2014.

[18] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,
and M. M. Swift. More for your money: exploiting performance
heterogeneity in public clouds. In ACM SoCC, pages 20:1–20:14, 2012.

[19] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi.
Clearing the clouds: a study of emerging scale-out workloads on modern
hardware. In ASPLOS, pages 37–48, 2012.

[20] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia.
Reducing latency via redundant requests: Exact analysis. In ACM
SIGMETRICS, pages 347–360, 2015.

[21] G. I. Goumas, K. Nikas, E. B. Lakew, C. Kotselidis, A. Attwood, E. Elm-
roth, M. Flouris, N. Foutris, J. Goodacre, D. Grohmann, V. Karakostas,
P. Koutsourakis, M. L. Kersten, M. Luján, E. Rustad, J. Thomson,
L. Tomás, A. Vesterkjaer, J. Webber, Y. Zhang, and N. Koziris. ACTi-
CLOUD: Enabling the next generation of cloud applications. In IEEE
ICDCS, pages 1836–1845, 2017.

[22] R. Jones et al. NetPerf: a network performance benchmark. Information
Networks Division, Hewlett-Packard Company, 1996.

[23] E. Kalyvianaki, T. Charalambous, and S. Hand. Adaptive resource
provisioning for virtualized servers using Kalman filters. ACM TAAS,
9(2):10:1–10:35, 2014.

[24] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, 2003.

[25] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload characterization
and prediction in the cloud: A multiple time series approach. In IEEE
NOMS, pages 1287–1294, 2012.

[26] L. Kleinrock. Time-shared systems: a theoretical treatment. J. ACM,
14(2):242–261, Apr. 1967.

[27] E. B. Lakew, C. Klein, F. Hernández-Rodriguez, and E. Elmroth.
Towards faster response time models for vertical elasticity. In IEEE/ACM
UCC, pages 560–565, 2014.

[28] E. B. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth.
Performance-based service differentiation in clouds. In IEEE CCGrid,
pages 505–514, 2015.

[29] E. B. Lakew, A. V. Papadopoulos, M. Maggio, C. Klein, and E. Elmroth.
KPI-agnostic control for fine-grained vertical elasticity. In IEEE/ACM
CCGrid, pages 589–598, 2017.

[30] G. Latouche and V. Ramaswami. Introduction to matrix analytic methods
in stochastic modeling. SIAM, 1999.

[31] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen. Data center
demand response: Avoiding the coincident peak via workload shifting
and local generation. In ACM SIGMETRICS, pages 341–342, 2013.

[32] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A review of
auto-scaling techniques for elastic applications in cloud environments.
J. Grid Comput., 12(4):559–592, 2014.

[33] P. Padala, K. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In EuroSys, pages 13–26, 2009.

[34] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized resources
in utility computing environments. In EuroSys, pages 289–302, 2007.

[35] J. F. Pérez, R. Birke, Z. Qiu, M. Björkqvist, and L. Y. Chen. Power
of redundancy: Designing partial replication for multi-tier applications.’.
In IEEE INFOCOM, 2017.

[36] I. Pietri and R. Sakellariou. Mapping virtual machines onto physical ma-
chines in cloud computing: A survey. ACM Comput. Surv., 49(3):49:1–
49:30, Oct. 2016.

[37] J. F. Prez, R. Birke, M. Bjrkqvist, and L. Y. Chen. Dual scaling VMs
and queries: Cost-effective latency curtailment. In IEEE ICDCS, pages
988–998, 2017.

[38] Z. Qiu and J. F. Pérez. Evaluating the effectiveness of replication for
tail-tolerance. In CCGrid, pages 443–452, 2015.

[39] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements in
the cloud: Observing, analyzing, and reducing variance. Proc. VLDB
Endow., 3(1-2):460–471, Sept. 2010.

[40] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed:
A cautionary tale. In USENIX NSDI, 2006.

[41] N. B. Shah, K. Lee, and K. Ramchandran. When do redundant requests
reduce latency? IEEE Trans. Communications, 64(2):715–722, 2016.

[42] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale: elastic resource
scaling for multi-tenant cloud systems. In ACM SoCC, page 5, 2011.

[43] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and
R. Griffith. Runtime vertical scaling of virtualized applications via online
model estimation. In IEEE SASO, pages 157–166, 2014.

[44] K. Sripanidkulchai et al. Are clouds ready for large distributed
applications? SIGOPS Oper. Syst. Rev., 44(2), 2010.

[45] S. K. Tesfatsion, L. Tomás, and J. Tordsson. OptiBook: Optimal resource
booking for energy-efficient datacenters. In IEEE/ACM IWQoS, pages
1–10, 2017.

[46] L. Tomas, E. B. Lakew, and E. Elmroth. Service level and performance
aware dynamic resource allocation in overbooked data centers. In 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid)(CCGRID), volume 00, pages 42–51, 2016.

[47] N. Vasic, D. M. Novakovic, S. Miucin, D. Kostic, and R. Bianchini.
Dejavu: accelerating resource allocation in virtualized environments. In
ASPLOS, pages 423–436, 2012.

[48] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker. Low latency via redundancy. In CoNEXT, pages 283–294,
2013.

[49] R. W. Wolff. Poisson arrivals see time averages. Operations Research,
30:223–231, 1982.

[50] Z. Wu, C. Yu, and H. V. Madhyastha. Costlo: Cost-effective redundancy
for lower latency variance on cloud storage services. In NSDI, pages
543–557, 2015.

[51] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: Avoiding long
tails in the cloud. In NSDI, pages 329–342, 2013.

